

ZERO LIQUID DISCHARGE IN DISTILLERY PLANTS AND UTILIZATION OF CO₂ FOR GREEN METHANOL PRODUCTION

ALL INDIA DISTILLERS' ASSOCIATION (AIDA)

Technical Seminar

Date: 23.06.2023

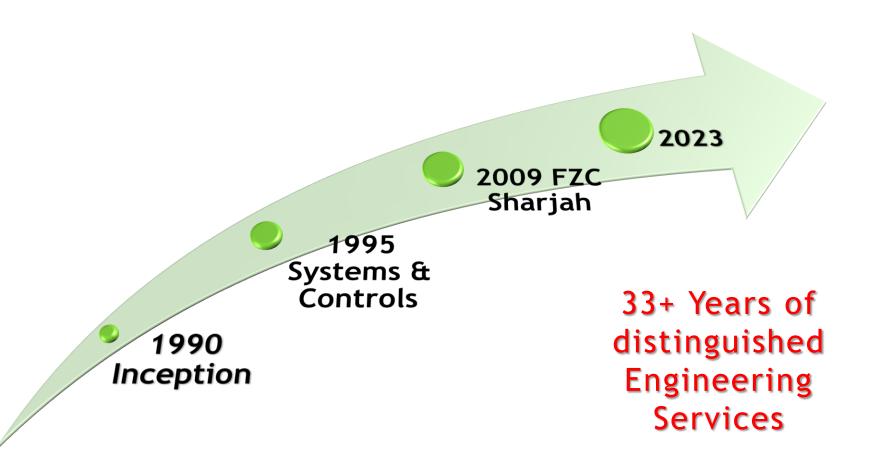
Bengaluru, Karnataka.

N.SATHYANARAYANAN
Process and Environment Dept.

Group

Avant-Garde Engineers and Consultants (P) Ltd

Avant-Garde Systems and Controls (P) Ltd


Consultancy and
Detailed Engineering
Services &
Supply of Power
Plant Equipment,
Site Services, O&M,
Plant Revamping

Avant-Garde Engineers & Consultants FZC, Sharjah

Consultancy and Detailed Engineering Services for Overseas Projects

Growth

Present Area of Business

Power Plants

Co-Gen, IPP, CPP, Biomass, MSW, WHRSG, DG, GTG

Distillery/Ethanol Plants

Multi-feed & Multi-Product Distillery, Zero Liquid Discharge, Slop Incineration

Chemical Plants

Chemical Complex Projects Chlor alkali, Chlorine & Hydrogen derivatives, Starch, Sorbitol & **CMC Plants**

RE Energy Mix

Assesment & Implementation Of RE Energy Projects for Energy Cost Optimization (ISTS/Group Captive for RTC) **Supply & Services**

> Supply of Boiler critical component, Energy Audit, Boiler revamping & Capacity upgradation

Sugar Plants

Raw Sugar, Plantation White, Refined Sugar

CBG Plants

Press mud/Bagasse/ Grain to CBG MSW / LFG to CBG

Green Hydrogen

Green Methanol / Green Ammonia/ Electrolysis/ **Biomass Gassification**

Boiler Design

Grate Boiler, AFBC, WHRSG, Vinasse Fired

Water, Wastewater **Treatment and ZLD Plants**

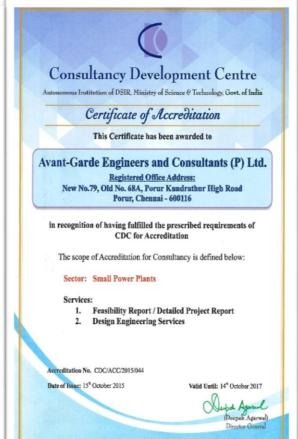
Water Treatment plants Sea Water Desalination Plants Effluent Treatment & Detailed engineering **Recycling Plants Condensate Polishing Units Sewage Treatment Plants**

Solar Plants

Ground Mount / Roof Top/ Floating/BESS

FGD

AVANT-GARDE


Overall Power Projects

S. No	Description	Commissioned		Under various stages		Total Capacity	Total No. of Plants
		Nos.	Capacity	Nos.	Capacity		
1	Cogeneration Plants	105	2298MW	41	1078MW	3376MW	146
2	Captive Power Plants	93	2862MW	51	1552MW	4414MW	144
3	Biomass Power Plants	53	493MW	7	95MW	588MW	60
4	MSW Plants	3	50MW	8	88MW	138MW	11
5	Solar Power Plants	122	2892MW	8	547 MW	3176MW	130
6	Slop incineration Projects	28	2727 KLPD	26	3088KLPD	5815KLPD	54
7	Distillery Plant with ZLD	21	2835KLPD	48	7239KLPD	10,074KLPD	69
8	Sugar Plants	10	60000TCD	11	68500TCD	128,500TCD	21
9	Flue Gas Desulphurisation	4	180+MW	3	550+MW	730+MW	7
10	Compressed Bio Gas (CBG)	1	6 TPD	1	5 TPD	11 TPD	2

Quality Assurance and Accreditation

ISO 9001: 2015

ISO 17020: 2012

CDC

Home Office Facilities Building - I

Office builtup Area -12,000 Sq.Ft DG Power Back-up -125 kVA(100%)


Roof Top Solar Power Plant – 10 KW_P

Open Space -12,000 Sq.Ft

Home Office Facilities Building - II

Office built-up Area -12,600 Sq.Ft

Roof Top Solar Power Plant – 42kWp

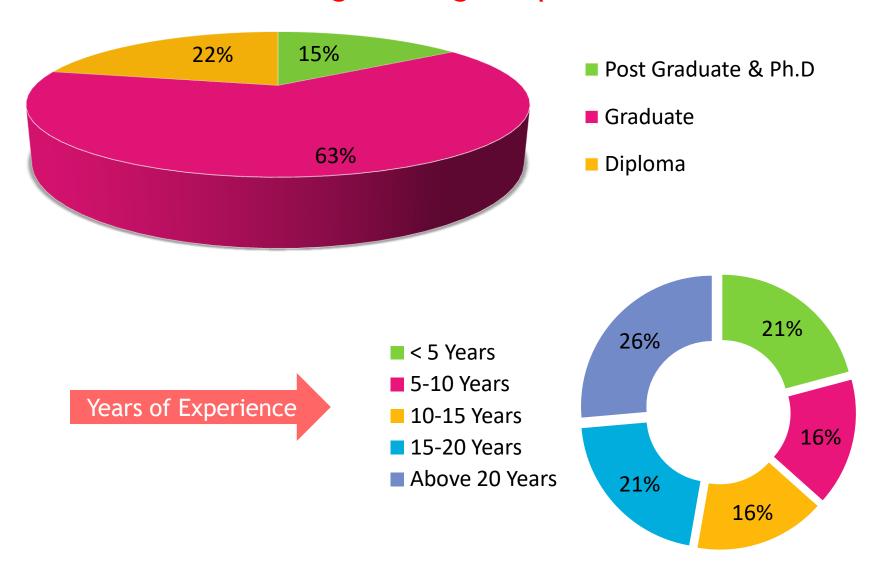
Ground Floor Parking -4000 Sq.Ft

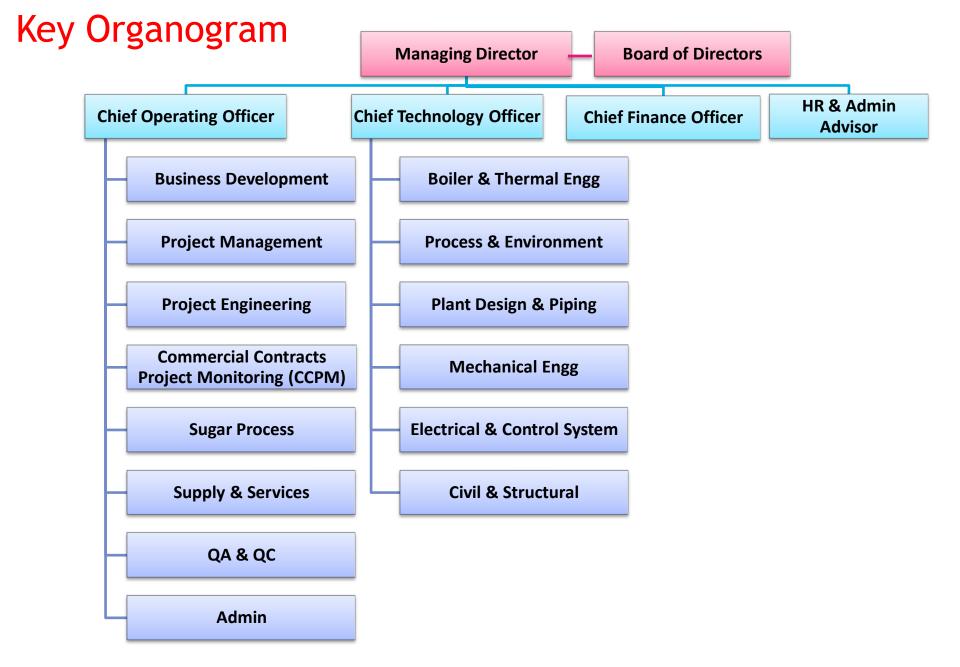
Solar and Wind Module -650 Watts

Computer Hardware Facilities

- Cyberoam Firewall
- Dell R640 Server
- Dell EMC Storage
- HP Proliant Server
- HP LTO6 Ultrium Ext Tape Drive
- HP A5500 Manageable Switches
- Canon IR ADV 4235 Printer
- Canon IRC2220 Color Printer
- A0 HP Plotters
- Life Size Video Conferencing

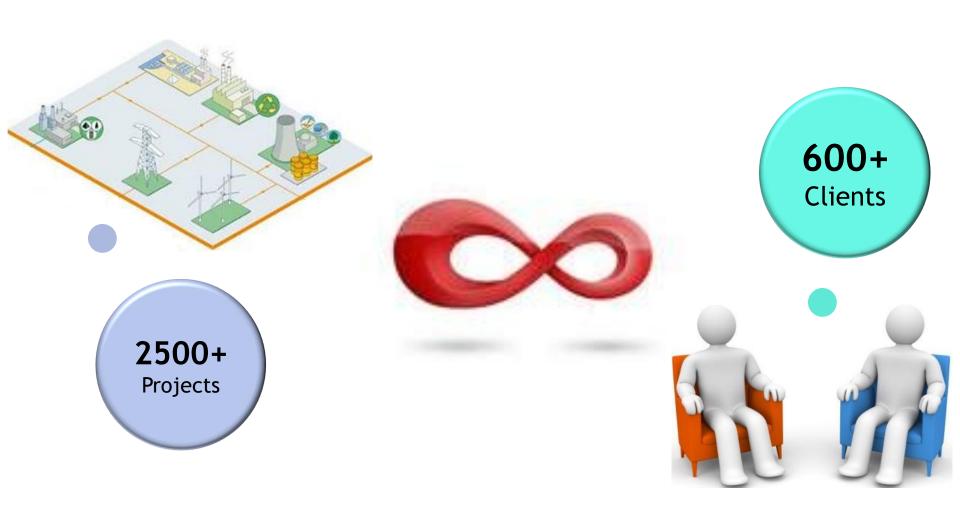
Licensed Software Package





Engineering Manpower

Empanelment & Association



Relationship Forever

Projects in 40+ Countries

North America	Africa	Middle East	Asia	Australia
USA	Comoros	Abu Dhabi	Brunei	Australia
Des State	Ethiopia	Bahrain	China	Fiji Islands
South America	Kenya	Dubai	India	New Zealand
Colombia	Libya C	Qatar	Indonesia	Mr. 3
Suriname	Mali	Saudi Arabia	Malaysia <	25 25
Ill months	Mauritius	Syria	Mongolia	3
Europe	Mozambique		Nepal &	D D
France	Nigeria	5	Pakistan	
Spain	Rwanda		Philippines	TE to
UK	Senegal		Singapore	San
	South Africa		Sri Lanka	
	Sudan	\	Thailand	
\	Swaziland		Vietnam	The de
No.	Uganda			

Concept to Commissioning Consultancy Services

Basic Engineering

- Feasibility Reports
- Detailed Project Reports
- Thermal Cycle Optimisation
- Plant Engineering

Detailed Engineering

- Plant Layout
- Equipment Layout
- Piping
- Electrical
- Switchyard Design
- DCS, PLC, Microprocessor
- Plant Building Design
- Civil works
- Structural design
- Project Management

Detailed Engineering

- Vendor rating
- Preparation of Specification for bought out items
- Evaluation of offers
- Preparation of Draft Purchase Order
- Vendor Drawing Review

Inspection, Erection & Commissioning

- Supervision of Erection and Commissioning
- Performance Testing services
- Inspection
 Services
- Expediting Services

ZLD IN DISTILLERY PLANT

AVANT-GARDE

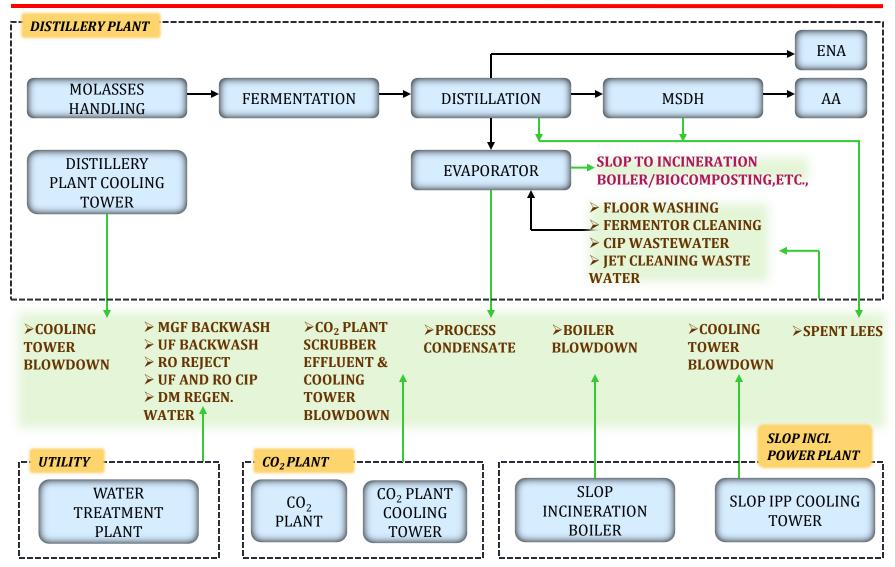
CLASSIFICATION OF DISTILLERY PLANTS

BASED ON FEED STOCK

MOLASSES BASED DISTILLERY PLANT

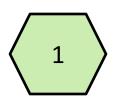
GRAIN BASED
DISTILLERY PLANT

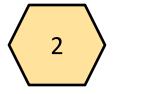
MOLASSES BASED DISTILLERY PLANT


AVANT-GARDE

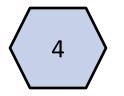
MULTI PRODUCT DISTILLERY WITH SLOP INCINERATION

MOLASSES BASED DISTILLERY PLANT OVERALL EFFLUENT GENERATION




MOLASSES BASED DISTILLERY PLANT LIST OF EFFLUENT DISPOSED WITHIN DISTILLERY PLANT

EFFLUENT DISPOSED IN SPENTWASH EVAPORATOR


DISTILLERY PLANT FLOOR WASHING

DISTILLERY PLANT FERMENTER CLEANING WASTE WATER

DISTILLERY PLANT CLEAN-IN-PLACE (CIP) WASTE WATER

EVAPORATOR JET CLEANING WASTE WATER

ETRP RO REJECT

MOLASSES BASED DISTILLERY PLANT SEGREGATION OF BALANCE EFFLUENT TO BE DISPOSED

ORGANIC EFFLUENT

- ➤ DISTILLERY PLANT SPENT WASH EVAPORATOR PROCESS CONDENSATE
- > DISTILLERY PLANT SPENTLEES
- ➤ CO₂ PLANT SCRUBBER EFFLUENT

INORGANIC EFFLUENT

- ➤ DISTILLERY PLANT COOLING TOWER BLOWDOWN
- > SLOP INCINERATION POWER PLANT BOILER BLOWDOWN
- ➤ SLOP INCINERATION POWER PLANT COOLING TOWER BLOWDOWN
- ➤ CO₂ PLANT COOLING TOWER BLOWDOWN
- > WATER TREATMENT PLANT EFFLUENT
 - (A) MGF BACKWASH
 - (B) UF BACKWASH
 - (C) RO REJECT
 - (D) UF AND RO CIP
 - (E) DM REGENERATION WASTE WATER

MOLASSES BASED DISTILLERY PLANT RECENT POLICIES

असाधारण EXTRAORDINARY

भाग II—खण्ड 3—उप-खण्ड (i)

PART II—Section 3—Sub-section (i)

प्राधिकार से प्रकाशित PUBLISHED BY AUTHORITY

सं. 457] नई दिल्ली, मुक्रवार, जुलाई 6, 2018/आषाढ़ 15 1940 No. 457] NEW DELHI, FRIDAY, JULY 6, 2018/ASHADHA 15, 1940

1. Molasses based distilleries:

- A) All molasses based distilleries including yeast manufacturing units shall achieve zero liquid discharge (ZLD) by:
 - Concentrating and incinerating the spent wash. Raw / Bio-methanated spent wash to be
 concentrated by MEE and / or RO (minimum 45-60 % solids) and incinerated in boiler; or
 Concentrating and utilising the spent wash in bio-composting with press mud. Biomethanated spent wash to be concentrated by MEE and / or RO (minimum 40% by volume
 with 30% solids) and to be converted into bio compost by mixing with press mud.
 - Other process / non process effluents, RO permeate, MEE condensate etc., shall be suitably treated and reused in the process; and shall not be discharged.
- B) New stand alone distilleries (not having sugar unit) or increase in production of standalone distilleries based on molasses shall achieve zero liquid discharge by concentrating and incinerating the spent wash. Raw/Bio-methanated spent wash to be concentrated by MEE and / or R.O. (Min. 45-60 % Solids) and incinerated in boiler.
 - Other process / non process effluents, R.O permeate, MEE condensate etc, shall be suitably treated and reused in the process; and shall not be discharged.
- 3. Any other process / industry producing alcohol by distillation:

Any other process / industry producing alcohol by distillation shall achieve zero liquid discharge by adopting suitable treatment methods.

MOLASSES BASED DISTILLERY PLANT CHARACTERISTICS OF ORGANIC EFFLUENT

S. NO.	DESCRIPTION	UOM	PROCESS CONDENSATE	SPENT LEES	CO ₂ PLANT EFFLUENT
1	рН	-	2.5 to 2.9	2.5	6.50 – 6.70
2	Chemical Oxygen Demand	ppm	5000 to 5500	3500 to 4000	500 to 8000
3	Bio-chemical Oxygen Demand	ppm	3700 to 4500	2000 to 2500	200 to 500
4	Volatile Acids	ppm	3200 to 3900	1800 to 2100	-
5	Total Dissolved Solids	ppm	500 to 550	300	1300 – 1400

MOLASSES BASED DISTILLERY PLANT CHARACTERISTICS OF INORGANIC EFFLUENT

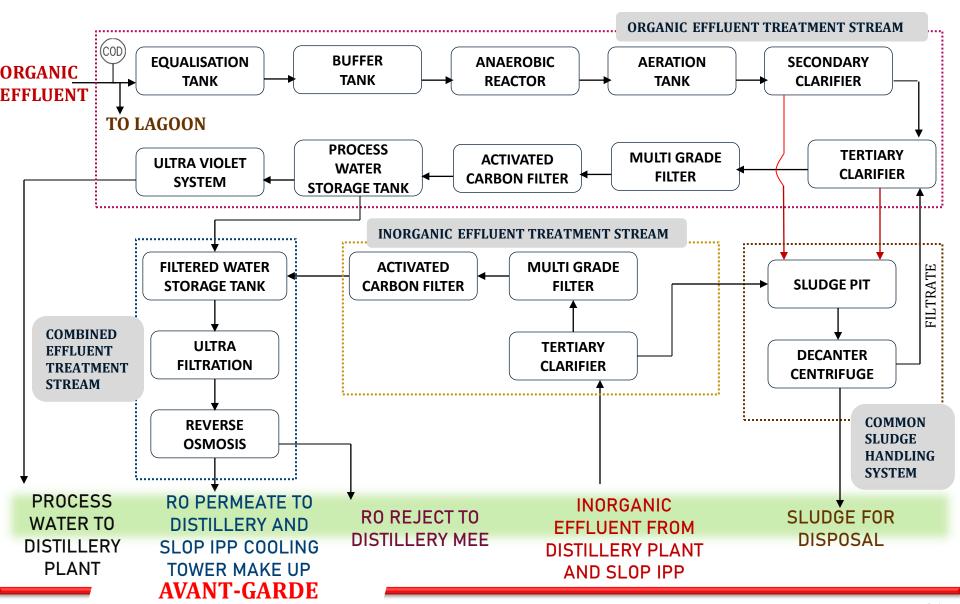
S. NO.	DESCRIPTION	UOM	BLENDED INORGANIC EFFLUENT QUALITY
1	рН	-	7.5 to 8.5
2	Total Dissolved Solids	ppm	1500 to 2000
3	Reactive Silica as SiO ₂	ppm	15 to 25
4	Total hardness as CaCO ₃	ppm	750 to 1200

TECHNOLOGIES -ZERO LIQUID DISCHARGE

In approximately a decade period of study on Zero Liquid Discharge concept, Thirteen (13) Technologies/Systems have been evaluated till date

- Direct Brackish Water Spiral Wound RO based system
- Direct UF system followed by Brackish Water Spiral Wound RO based system
- Advanced Oxidation system
- Proprietary -1 Chemical based system
- Proprietary -2 Chemical based system
- Proprietary -3 Chemical based system
- Galvanic Principle Based system
- Direct sea water spiral wound RO membrane based system
- Plate & Tube type (Disc type) RO membrane based system
- Carrier Gas Extraction (CGE)
- Counter Flow Reverse Osmosis System (CFRO)
- Forward Osmosis system (FO)
- Biological treatment system followed by UF & RO based system

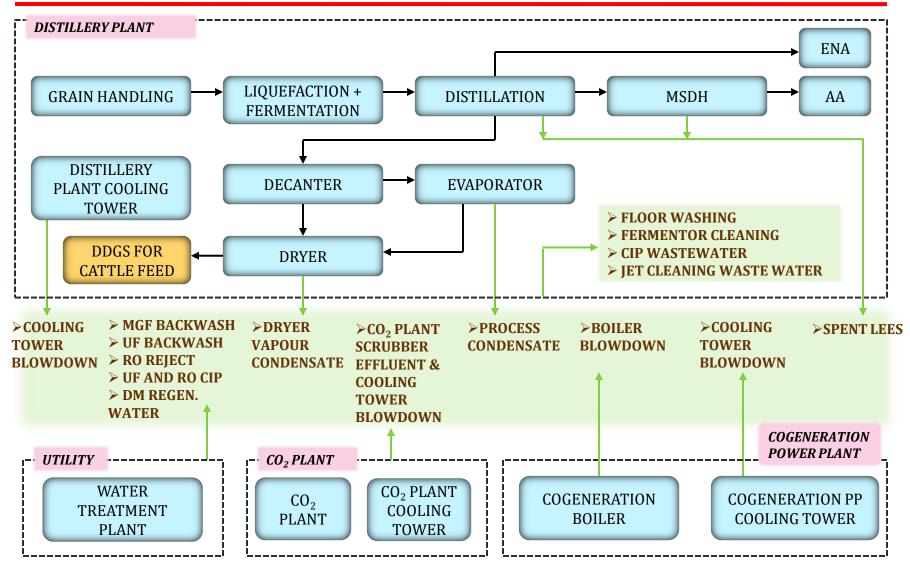
MOLASSES BASED DISTILLERY PLANT SELECTION OF APPROPRIATE TREATMENT SYSTEM


Based on evaluation, 'Biological Treatment System followed by UF and RO based system', which is also identified as 'Effluent Treatment & Recycling Plant (ETRP)' is the recommended system for handling effluent from Distillery plant.

This system consist of the following streams

- 1. Organic Effluent Treatment Stream (Biological based treatment system)
- 2. Inorganic Effluent Treatment Stream
- 3. Combined UF and RO Membrane based Treatment Stream
- 4. Common Sludge handling & disposal system.

MOLASSES BASED DISTILLERY PLANT PROCESS FLOW DIAGRAM - ETRP



GRAIN BASED DISTILLERY PLANT

AVANT-GARDE

GRAIN BASED DISTILLERY PLANT OVERALL EFFLUENT GENERATION

GRAIN BASED DISTILLERY PLANT SEGREGATION OF EFFLUENT TO BE DISPOSED

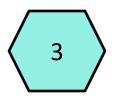
ORGANIC EFFLUENT

- ➤ DISTILLERY PLANT
 THIN STILLAGE
 EVAPORATOR PROCESS
 CONDENSATE
- > DISTILLERY PLANT SPENTLEES
- ➤ CO₂ PLANT SCRUBBER EFFLUENT
- ➤ DRYER VAPOUR CONDENSATE

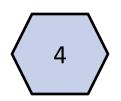
INORGANIC EFFLUENT

- ➤ DISTILLERY PLANT COOLING TOWER BLOWDOWN
- > COGENERATION POWER PLANT BOILER BLOWDOWN
- > COGENERATION POWER PLANT COOLING TOWER BLOWDOWN
- ➤ CO₂ PLANT COOLING TOWER BLOWDOWN
- > WATER TREATMENT PLANT EFFLUENT
 - (A) MGF BACKWASH
 - (B) UF BACKWASH
 - (C) RO REJECT
 - (D) UF AND RO CIP
 - (E) DM REGENERATION WASTE WATER

GRAIN BASED DISTILLERY PLANT SEGREGATION OF EFFLUENT TO BE DISPOSED (CONT.)


OTHER EFFLUENT TO DISPOSED FROM DISTILLERY PLANT

 $\left\langle \begin{array}{c} 1 \end{array} \right\rangle$


DISTILLERY PLANT FLOOR WASHING

DISTILLERY PLANT FERMENTER CLEANING WASTE WATER

DISTILLERY PLANT CLEAN-IN-PLACE (CIP) WASTE WATER

EVAPORATOR JET CLEANING WASTE WATER

GRAIN BASED DISTILLERY PLANT RECENT POLICIES

असाधारण

EXTRAORDINARY

भाग II—खण्ड 3—डप-खण्ड (i) PART II—Section 3—Sub-section (i)

प्राधिकार से प्रकाशित

PUBLISHED BY AUTHORITY

सं. 457] नई दिल्ली, सुक्रवार, जुलाई 6, 2018/आपाद 15 1940 No. 457] NEW DELHI, FRIDAY, JULY 6, 2018/ASHADHA 15, 1940

2. Grain based distilleries:

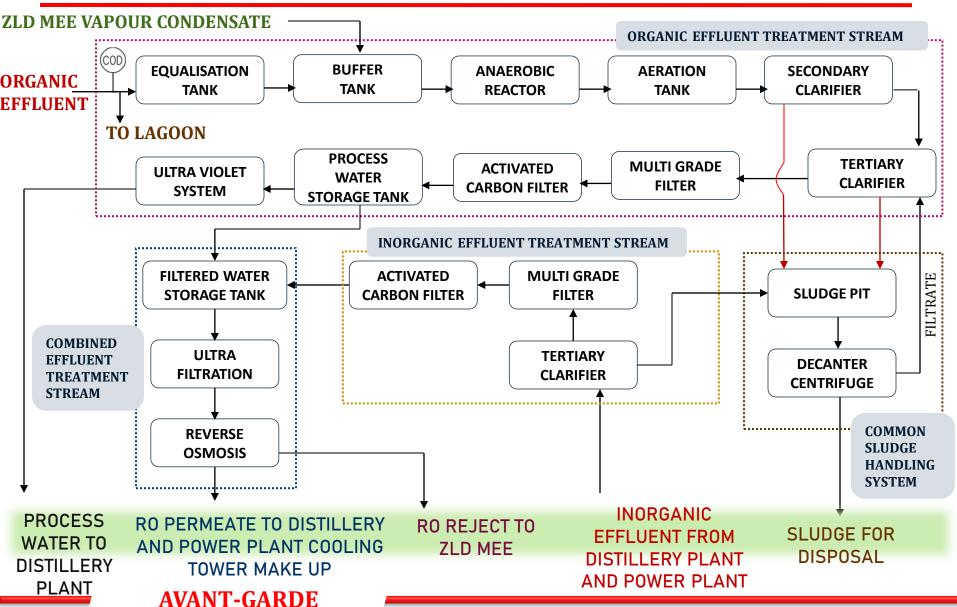
All grain based distilleries shall achieve zero liquid discharge by decantation, concentration by evaporation and drying. The distilleries shall follow the below route for achieving ZLD

- (i) The whole stillage shall be decanted, thin stillage shall be evaporated and wet cake and syrup shall be mixed and dried in a dryer and converted into Distillers' Dried Grains with Solubles (DDGS). Bio-methanation of any intermediate stream for recovery of bio gas can also be carried out by the industries.
- (ii) The moisture content of DDGS should not be more than 10 %.
- Other non process effluents, R.O permeate, MEE condensate etc, shall be suitably treated and reused in the process; and shall not be discharged
- (iv) Industries those shall operate on both grain and molasses shall have both the systems for achieving ZLD.
- 3. Any other process / industry producing alcohol by distillation:

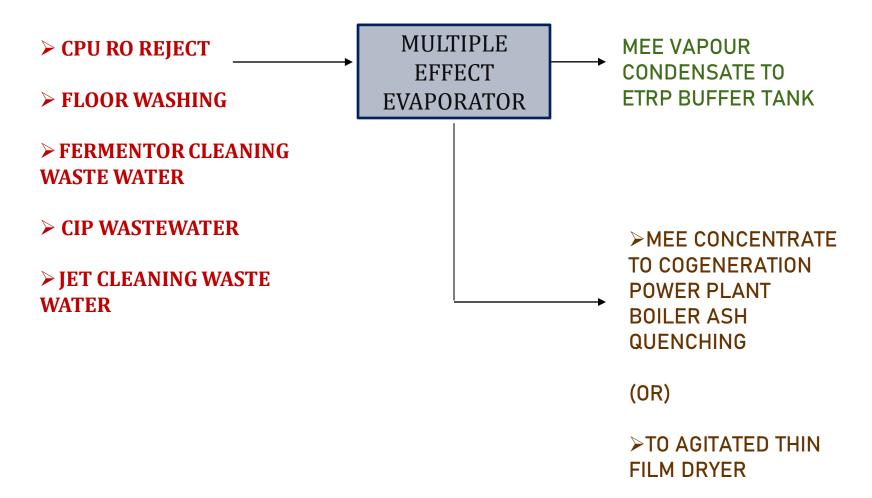
Any other process / industry producing alcohol by distillation shall achieve zero liquid discharge by adopting suitable treatment methods.

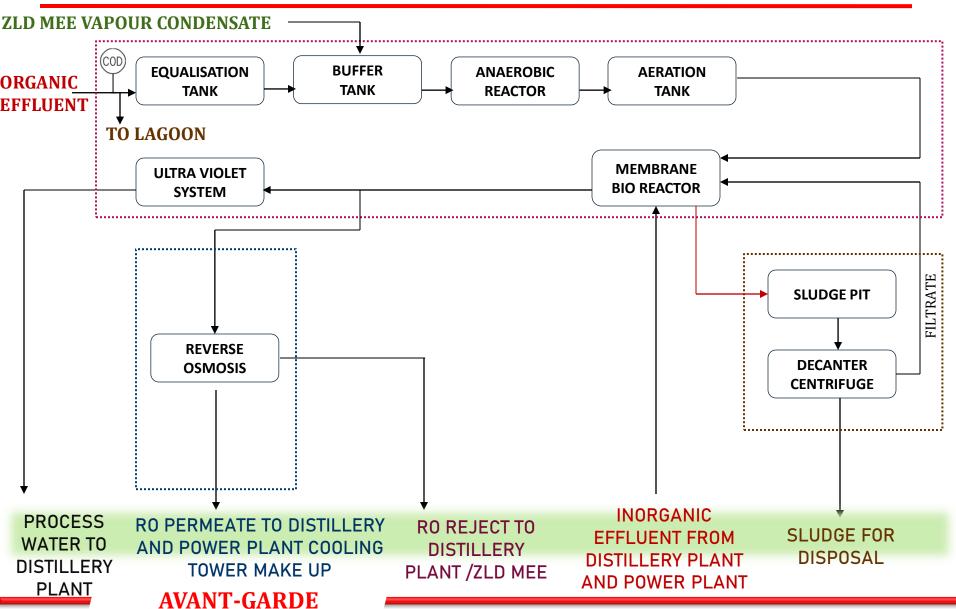
GRAIN BASED DISTILLERY PLANT CHARACTERISTICS OF ORGANIC EFFLUENT

S. NO.	DESCRIPTION	UOM	PROCESS CONDENSATE	SPENT LEES	DRYER VAPOUR CONDENSATE	CO ₂ PLANT EFFLUENT
1	рН	-	2.5 to 2.9	2.5	3 to 5	6.50 – 6.70
2	Chemical Oxygen Demand	ppm	1200 to 2000	800 to 1400	1200 to 6000	500 to 8000
3	Bio-chemical Oxygen Demand	ppm	800 to 1800	500 to 1000	800 to 3500	200 to 500
4	Volatile Acids	ppm	1000 to 2000	1800 to 2500	2000 to 3000	-
5	Total Dissolved Solids	ppm	100 to 400	200 to 900	200 to 500	1300 to 1400


GRAIN BASED DISTILLERY PLANT CHARACTERISTICS OF INORGANIC EFFLUENT

S. NO.	DESCRIPTION	UOM	BLENDED INORGANIC EFFLUENT QUALITY
1	рН		7.5 to 8.5
2	Total Dissolved Solids	ppm	1500 to 2000
3	Reactive Silica as SiO ₂	ppm	15 to 25
4	Total hardness as CaCO ₃	ppm	750 to 1200


GRAINBASED DISTILLERY PLANT PROCESS FLOW DIAGRAM - ETRP


GRAIN BASED DISTILLERY PLANT ETRP RO REJECT ZLD SYSTEM

DISTILLERY PLANT PROCESS FLOW DIAGRAM – ETRP WITH MBR

CASE STUDY

EFFLUENT TREATMENT AND RECYCLING PLANT

Sl.No.	Parameters	Typical 100 KLPD Distillery plant	Typical 330 KLPD distillery plant
1	Operating Cost (Power , Chemical and Consumables)	~ Rs. 38 paise/ litre of Alcohol	~ Rs. 38 paise/litre of Alcohol
2	Space Required	~ 4500 m ² -5200 m ²	$\sim 6500 \text{ m}^2\text{-}6900 \text{ m}^2$
3	Power Consumption	~120 -150 kWh	~250kWh

RENEWABLE FUEL GENERATION

PRODUCTION OF BIOGAS

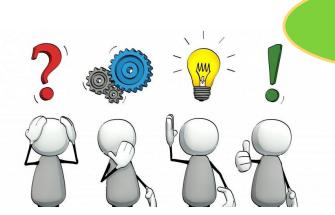
- Anaerobic digestion of organic effluent produces **Biogas** during the process of biodegration of organic matter in the digester.
- ❖ Biogas is collected in the head space of the anaerobic digester (or under the flexible cover)
- Mixture of Methane (55-60%), Carbon Dioxide (40-45%), Hydrogen, Hydrogen Sulphide (0.3%) and Moisture(1%),
- Moderate Calorific Value
- Theoretically 0.5 to 0.6 m³ of methane / kg of COD

RENEWABLE FUEL GENERATION (cont.)

BIOGAS AS ADDITIONAL FUEL

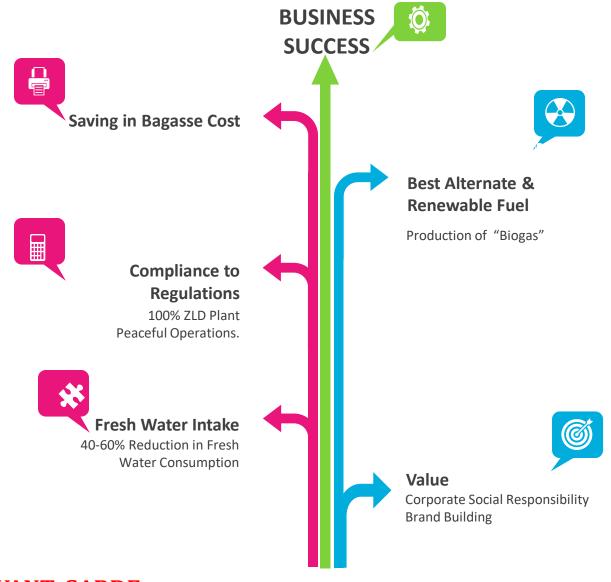
- Option -1 : Savings on cost of Bagasse
- ❖ Option -2: Revenue from excess power
- Option -3: Saving in fuel cost (bagasse) in ash granulation plant

CHALLENGES IN ETRP


- Start up and Stabilization Period of Anaerobic System
- ➤ Higher Recovery in the RO System without compromising the minimum assured life of RO membrane
- ➤ One of the major component in the Operating Cost is significant caustic consumption in Anaerobic Feed treatment and resultant TDS increase.
- ➤ Upsets in the Upstream Evaporation Plant
- Complications in the Online measurement of COD

CORPORATE SOCIAL RESPONSIBILITY

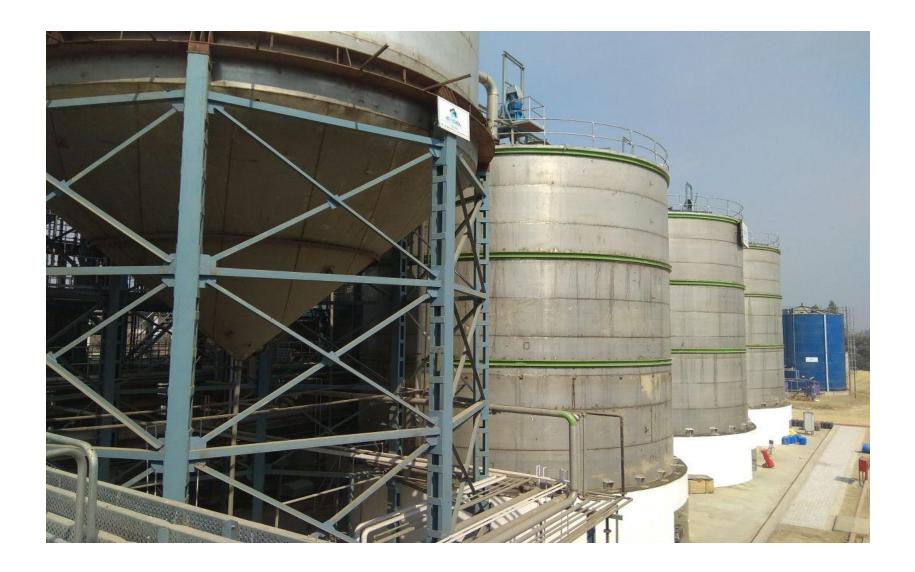
- ❖ The CSR approach is holistic and integrated with the core business strategy for addressing social and environmental impacts of businesses.
- CSR needs to address the well-being of all stakeholders and not just the company's shareholders.
- ❖ Development that meets the needs of the present without compromising the ability of future generations to meet their own needs


❖ So

What is the ROI/IRR?

SUMMARY-BENEFITS OF ZLD

160 KLPD Distillery Plant in UP


Multiproduct Distillery in Kenya

Bulk Storage Tank

Fermentation Section

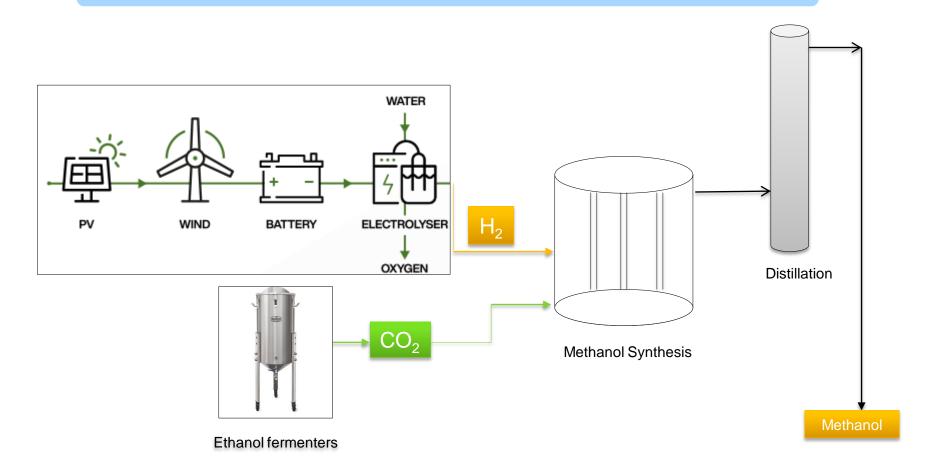
Evaporator

SLOP CONCENTRATION (MEE)

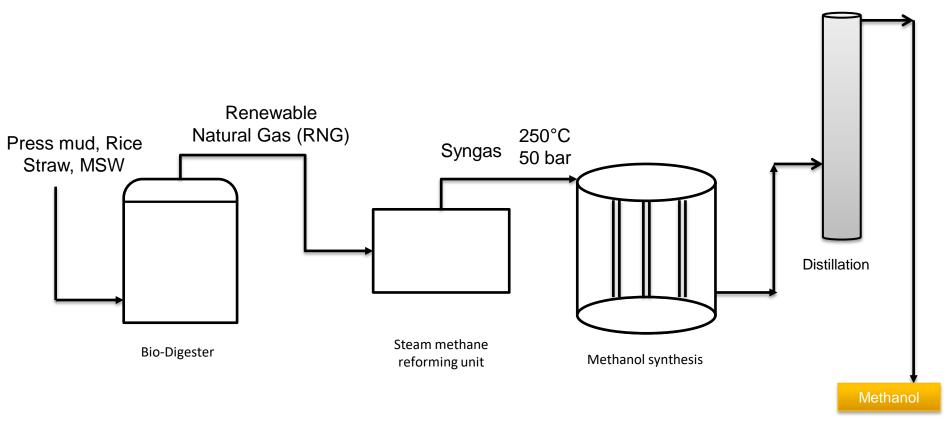

GREEN METHANOL FROM ETHANOL PLANT'S BIOGENIC CO₂

AVANT-GARDE

GREEN METHANOL


The Perfect Carrier for Green Hydrogen & It is the Future Fuel

GREEN METHANOL FROM CO₂ HYDROGENATION IN SUGAR COGEN & ETHANOL PLANT



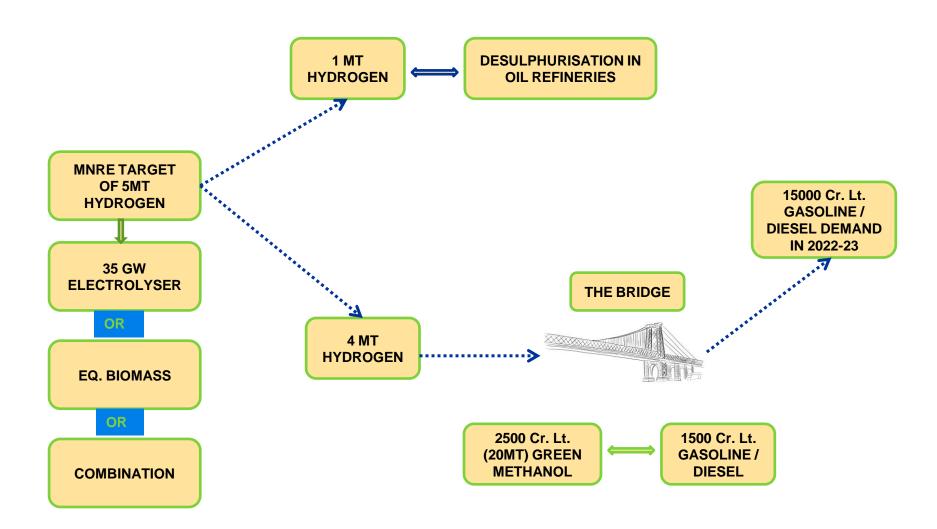
Methanol production – CO₂ from the fermenters in the ethanol plant

GREEN METHANOL FROM RENEWABLE NATURAL GAS

Reaction Chemistry:

$$CH_4 + H_2O \longrightarrow CO + 3H_2$$
 $CO + 2H_2 \longrightarrow CH_3OH$

POTENTIAL FOR METHANOL PRODUCTION IN ETHANOL PLANTS



- 1. Typical 100 kLPD Ethanol plant can co-produce 40 kLPD Green Methanol (or eMethanol), by using the Biogenic CO₂ released from the Fermeters. Renewable power (sugar cogen or solar / wind) of about 13.5 MW will be needed methanol production through electrolysis process.
- 2. About 500 Crore Litres of eMethanol can be produced from the Ethanol Plants in India, by 2025 (corresponding to E20 blending requirement in Gasoline), by using about 5000 MW renewable power.
- 3. UP Govt provides subsidy upto 60% of Electrolyser cost, for Green Hydrogen production.
- 4. Green Methanol is being procured in Marine Segment (for meeting IMO-2023 targets) at over Rs.70 per litre.
- 5. Huge potential for Green Methanol, under Green Hydrogen Mission.

GREEN HYDROGEN SUPPLY CHAIN & DEMAND BY 2030

PRESENT MARKET FOR GREEN METHANOL

- a. International Maritime Organisation's IMO-2023 aims to reduce carbon emissions from international shipping by 40% by 2030 and 70% by 2050 from the 2008 levels, by adopting CII (Carbon Intensity Indicator) system with A to E grades to move towards A. Green Methanol perfectly fits into their goals, with more and more new ships switching to Methanol fuel.
- b. Leading shipping companies like AP Moller-Maersk, CMA CGM, COSCO, Methanex Waterfront Shipping and Stena, etc have already chosen marine methanol engines, to achieve low emission levels. When they switch to Green Methanol, it would become carbon neutral.
- c. There is a clear trend of new marine vehicle propulsions being ordered with methanol engines (over 50%), during the last one year.

PRESENT MARKET FOR GREEN METHANOL (CONT.)

- d. Bunkering hubs for eMethanol are being planned in the leading ports throughout the globe.
- e. Platts, part of S&P Global Commodity Insights, will launch daily production cost-based renewable methanol prices for North America, Europe and Asia, in response to market feedback and the maritime industry's need for price valuations for sustainable methanol, this June.
- f. IRENA has projected an annual production of 500 million MT by 2050 (current global production is 110 million MT), with 80% as eMethanol or Bio-Methanol. India's share is expected is expected to be 10-20% of global production, in consideration of abundant biomass / renewable energy potential (1million MT=125 Cr Lt) and the progressive goals for Green Hydrogen.

NEED OF THE HOUR – FOR DOMESTIC MARKET

➤ All technologies like CO₂ hydrogenation, syngas to methanol synthesis, electrolysis, CO₂ purification, reformation & gasification are proven and established systems in the industries, which have been adopted for different applications. Hence there are no technological risks.

➤ Green Methanol is the next renewable fuel awaiting policy support, like Ethanol! It's the future fuel as well as the ideal Carrier & Bridge for Green Hydrogen!

NEED OF THE HOUR - FOR DOMESTIC MARKET (CONTD.)

- ➤ As Ethanol being blended with petrol (E20), Greeen Methanol (bio-methanol as well as eMethanol) can be blended with Diesel (MD15). Being renewable fuel and an excellent Carrier for Green Hydrogen, this will enable attaining the nation's target of 5MT green hydrogen by 2030 and also energy self-sufficiency goal by 2047.
- ➤ Energy self-sufficiency by 2047 will automatically create the pathway for the next goal of NZE by 2070!
- ➤ Looking forward to AIDA's steps & initiatives in representing the Govt for Green Methanol Blending Policy!

CLIENTELE OF ANAEROBIC SYSTEMS

Sl. No	Name of Client	Name of Client Type of Industry & Plant capacity		ETPR / ZLD		
			m ³ /h	m ³ /d		
1	Dhanalakshmi Srinivasan Sugars Private Ltd., Tamil Nadu	Sugar plant 3500 TCD	93	2232		
2	DCM Shriram Limited, (DSCL Sugar – Hariawan), UP	Sugar plant 5000 TCD	125	3000		
3	Twenty One Sugars, Malwati, Maharashtra	Sugar plant 5000 TCD	32	750		
4	KPR Sugar mills ltd., Afzalpur, Karnataka	Sugar plant 10000 TCD	83	2000		
5	Wave Industries pvt. ltd., Dhanaura, UP	Sugar plant 8300 TCD	83	2000		
6	Balrampur Chini mills ltd. Gularia Unit, UP	Sugar Plant 8000 TCD	34	800		

		Type of	ETPR / ZLD				
Sl. No	Name of Client	Industry & Plant capacity	•	Effluent acity	Inorganio capa	Effluent acity	
			m ³ /h	m ³ /d	m ³ /h	m ³ /d	
7	Madhucon Sugars and Power Limited, AP	Distillery 65 KLPD	42	1008	-	-	
8	Mankapur Chini Mills Limited, UP	Distillery 115 KLPD	58	1398	-	-	
9	DCM Shriram Limited, (DSCL Sugar – Hariawan), UP	Distillery 160 KLPD	89	2131	-	-	
10	Triveni Engineering & Industries Limited – Sabitgarh, UP	Distillery 160 KLPD	72	1720	49	1164	
11	Gobind Sugar Mills Limited, UP	Distillery 100 KLPD	67	1618	21	494	

Sl. No		Type of	ETPR / ZLD		/ ZLD		
	Name of Client	Industry & Organic Effluen Plant capacity capacity	Plant canacity			c Effluent acity	
			m ³ /h	m ³ /d	m ³ /h	m ³ /d	
12	DCM Shriram Limited, (DSCL Sugar – Ajbapur), UP	Distillery 225 KLPD	102	2451	33	778	
13	Balrampur Chini Mills Limited – Unit Gularia, UP	Distillery 160 KLPD	56	1338	14	336	
14	Dalmia Bharat Sugar and Industries Limited, Jawaharpur, UP	Distillery 120 KLPD	42	1000	9	225	
15	K.P.R. Sugar Mill Limited – Almel, Karnataka	Distillery 90 KLPD	58	1372	21	496	
16	K.M. Sugar Mills Limited, UP	Distillery 40 KLPD	25	603	6.5	150	
17	Triveni Engineering and Industries Limited – Muzaffarnagar, UP	Distillery 160 KLPD	60	1424	32	1763	

		Type of	ETPR / ZLD			
Sl. No	Sl. No Name of Client	Industry & Plant capacity	Organic Effluent capacity		Inorganic Effluent capacity	
			m ³ /h	m^3/d	m ³ /h	m ³ /d
18	Triveni Engineering and Industries Limited – Milk Narayanpur, UP	Distillery 160 KLPD	73	1737	18	440
19	Triveni Engineering and Industries Limited – Muzaffarnagar, UP (Phase 2)	Distillery 60 KLPD	17	400	5	128
20	Wave Industries Pvt. Ltd., UP	Distillery 100KLPD	63	1503	9.3	229
21	K.P.R. Sugar Mill Limited – Afzalpur, Karnataka	Distillery 220 KLPD	83	1985	28	671
22	Dalmia Bharat Sugar and Industries Limited, Ramgarh, UP	Distillery 120 KLPD	42	1000	9.5	225
23	Dalmia Bharat Sugar and Industries Limited, Jawaharpur, UP	Distillery 120 KLPD	42	1000	9.50	225

	Type of	ETPR / ZLD				
Sl. No	Name of Client	Industry & Plant capacity	Organic capa	Effluent acity	_	c Effluent acity
			m ³ /h	m ³ /d	m ³ /h	m ³ /d
24	Balrampur Chini mills ltd., Unit : Balrampur, UP	Distillery 330 KLPD	111	2670	45	1041
25	Balrampur Chini mills ltd., Unit : Maizapur, UP	Distillery 323 KLPD	129	3095	38	904
	TOTAL			54584	m ³ /day	

Sl. No		Type of		ETPR	/ ZLD		
	Name of Client	Industry & Plant capacity	_	Effluent acity		nic Effluent pacity	
			m ³ /h	m ³ /d	m ³ /h	m ³ /d	
1	Inland Green Energy,	Distillery 350 KLPD	115	2770	58	1398	
2	Grainfuel Distilleries pvt. ltd., Gujarat	Distillery 250 KLPD	61	1459	55	1309	
3	Twenty One Sugars, Unit 1 – Malwati, Maharashtra	Distillery 200 KLPD	52	1241	15	360	
4	Twenty One Sugars, Unit 2 – Latur, Maharashtra	Distillery 200 KLPD	52	1241	15	360	
5	Kribhco, Bharati Cooperative limited, Hazira, Gujarat	Distillery 250 KLPD	Under Design				
6	Kribhco Bharati Cooperative limited, Krishnapatnam, AP	Distillery 250 KLPD	Under Design				

	Type of		ETPR / ZLD				
Sl. No	Name of Client	Industry & Plant capacity	Organic Effluent capacity		Inorganic Effluent capacity		
			m^3/h m^3/d		m ³ /h	m ³ /d	
7	Majestic Basmati Rice pvt. ltd., Mandideep, MP	Distillery 65 KLPD	Under Design				
8	Assago Industries pvt. Ltd., AP	Distillery 200 KLPD	Under Design				
9	SPAC starch products (I) pvt. ltd., TN	Distillery 160 KLPD	Under Design				
10	Nadahalli Ethanol & Allied Industries ltd., Karnataka	Distillery 220 KLPD	Under Design				
11	Nandadevi Bioenergy LLP, TN	Distillery 160 KLPD	Under Design				
12	ADAS Biofuels, Ahmedabad, Gujarat	Distillery 2 x 250 KLPD		Under Design			

	Type of		ETPR / ZLD				
Sl. No	Name of Client	Name of Client Industry & Plant capacity	Organic Effluent capacity		Inorganic Effluent capacity		
			m^3/h m^3/d m^3/h			m ³ /d	
17	SPAC starch products (I) pvt. ltd., TN	Distillery 160 KLPD	Under Design				
18	Nadahalli Ethanol & Allied Industries ltd., Karnataka	Distillery 220 KLPD	Under Design				
19	Nandadevi Bioenergy LLP, TN	Distillery 160 KLPD	Under Design				
20	ADAS Biofuels, Ahmedabad, Gujarat	Distillery 2 x 250 KLPD	Under Design				
21	Bajaj Hindusthan Sugar ltd.,	Distillery 8000 KLPD (14 PLANTS)		Under	Design		

Thank you

Contact:

Ethanol / Distillery – Mr. P.Subramanian – GM-Distillery – psubramanian@avant-garde.co.in / 9600166664

ZLD/CBG – Mr.N.Sathyanarayanan – Asst.Manager (P&E) nsathyanarayanan@avant-garde.co.in / 7401208533

Methanol / Hydrogen derivates – Mr.S.Karthik Kumar – Dy. Mngr (P&E) skarthikkumar@avant-garde.co.in / 9843601199

Business Enquiries – Mr. Ram Natarajan – Sr. DGM (BD) ramnatarajan@avant-garde.co.in / 9940346711

Business Enquiries – Mr. G.Srinath – Manager (BD) gsrinath@avant-garde.co.in / 9840996322